Category Archives: Climate science

Climate Change Will Cost Us Even More Than We Think

Economists greatly underestimate the price tag on harsher weather and higher seas. Why is that?

The New York Times OPINION, by Naomi Oreskes and 
Credit…Mike McQuade

For some time now it has been clear that the effects of climate change are appearing faster than scientists anticipated. Now it turns out that there is another form of underestimation as bad or worse than the scientific one: the underestimating by economists of the costs.

The result of this failure by economists is that world leaders understand neither the magnitude of the risks to lives and livelihoods, nor the urgency of action. How and why this has occurred is explained in a recent report by scientists and economists at the London School of Economics and Political Science, the Potsdam Institute for Climate Impact Research and the Earth Institute at Columbia University.

One reason is obvious: Since climate scientists have been underestimating the rate of climate change and the severity of its effects, then economists will necessarily underestimate their costs.

But it’s worse than that. A set of assumptions and practices in economics has led economists both to underestimate the economic impact of many climate risks and to miss some of them entirely. That is a problem because, as the report notes, these “missing risks” could have “drastic and potentially catastrophic impacts on citizens, communities and companies.”

One problem involves the nature of risk in a climate-altered world. Right now, carbon dioxide is at its highest concentration in the atmosphere in three million years (and still climbing). The last time levels were this high, the world was about five degrees Fahrenheit warmer and sea level 32 to 65 feet higher. Humans have no experience weathering sustained conditions of this type.

Typically, our estimates of the value or cost of something, whether it is a pair of shoes, a loaf of bread or the impact of a hurricane, are based on experience. Statisticians call this “stationarity.” But when conditions change so much that experience is no longer a reliable guide to the future — when stationarity no longer applies — then estimates become more and more uncertain.

Hydrologists have recognized for some time that climate change has undermined stationarity in water management — indeed, they have declared that stationarity is dead. But economists have by and large not recognized that this applies to climate effects across the board. They approach climate damages as minor perturbations around an underlying path of economic growth, and take little account of the fundamental destruction that we might be facing because it is so outside humanity’s experience.

A second difficulty involves parameters that scientists do not feel they can adequately quantify, like the value of biodiversity or the costs of ocean acidification. Research shows that when scientists lack good data for a variable, even if they know it to be salient, they are loath to assign a value out of a fear that they would be “making it up.”

Therefore, in many cases, they simply omit it from the model, assessment or discussion. In economic assessments of climate change, some of the largest factors, like thresholds in the climate system, when a tiny change could tip the system catastrophically, and possible limits to the human capacity to adapt, are omitted for this reason. In effect, economists have assigned them a value of zero, when the risks are decidedly not. One example from the report: The melting of Himalayan glaciers and snow will both flood and profoundly affect the water supply of communities in which hundreds of millions of people live, yet this is absent from most economic assessments.

A third and terrifying problem involves cascading effects. One reason the harms of climate change are hard to fathom is that they will not occur in isolation, but will reinforce one another in damaging ways. In some cases, they may produce a sequence of serious, and perhaps irreversible, damage.

For example, a sudden rapid loss of Greenland or West Antarctic land ice could lead to much higher sea levels and storm surges, which would contaminate water supplies, destroy coastal cities, force out their residents, and cause turmoil and conflict.

Another example: increased heat decreases food production, which leads to widespread malnutrition, which diminishes the capacity of people to withstand heat and disease and makes it effectively impossible for them to adapt to climate change. Sustained extreme heat may also decrease industrial productivity, bringing about economic depressions.

In a worst-case scenario, climate impacts could set off a feedback loop in which climate change leads to economic losses, which lead to social and political disruption, which undermines both democracy and our capacity to prevent further climate damage. These sorts of cascading effects are rarely captured in economic models of climate impacts. And this set of known omissions does not, of course, include additional risks that we may have failed to have identified.

The urgency and potential irreversibility of climate effects mean we cannot wait for the results of research to deepen our understanding and reduce the uncertainty about these risks. This is particularly so because the study suggests that if we are missing something in our assessments, it is likely something that makes the problem worse.

This is yet another reason it’s urgent to pursue a new, greener economic path for growth and development. If we do that, a happy ending is still possible. But if we wait to be more certain, the only certainty is that we will regret it.


Naomi Oreskes is a professor of the history of science at Harvard and the author, most recently, of “Why Trust Science?” Nicholas Stern is chair of the Grantham Research Institute on Climate Change and the Environment at the London School of Economics and the author of “Why Are We Waiting? The Logic, Urgency and Promise of Tackling Climate Change.”

2°C: BEYOND THE LIMIT – Extreme climate change has arrived in America

[BenIndy Editor: The focus here is on New Jersey, but read on for reference to Solano County, California, up 2.1 degrees Fahrenheit since 1895.  – RS]
The Washington Post, by Steven Mufson, Chris Mooney, Juliet Eilperin and John Muyskens, Photography by Salwan Georges. Aug. 13, 2019

LAKE HOPATCONG, N.J. — Before climate change thawed the winters of New Jersey, this lake hosted boisterous wintertime carnivals. As many as 15,000 skaters took part, and automobile owners would drive onto the thick ice. Thousands watched as local hockey clubs battled one another and the Skate Sailing Association of America held competitions, including one in 1926 that featured 21 iceboats on blades that sailed over a three-mile course.

In those days before widespread refrigeration, workers flocked here to harvest ice. They would carve blocks as much as two feet thick, float them to giant ice houses, sprinkle them with sawdust and load them onto rail cars bound for ice boxes in New York City and beyond.

“These winters do not exist anymore,” says Marty Kane, a lawyer and head of the Lake Hopatcong Foundation.

That’s because a century of climbing temperatures has changed the character of the Garden State. The massive ice industry and skate sailing association are but black-and-white photographs at the local museum. And even the hardy souls who still try to take part in ice fishing contests here have had to cancel 11 of the past dozen competitions for fear of straying onto perilously thin ice and tumbling into the frigid water.

New Jersey may seem an unlikely place to measure climate change, but it is one of the fastest-warming states in the nation. Its average temperature has climbed by close to 3.6 degrees Fahrenheit since 1895 — double the average for the Lower 48 states.

Over the past two decades, the 3.6 degrees Fahrenheit number has emerged as a critical threshold for global warming. In the 2015 Paris accord, international leaders agreed that the world should act urgently to keep the Earth’s average temperature increases “well below” 3.6 degrees Fahrenheit by the year 2100 to avoid a host of catastrophic changes.

The potential consequences are daunting. The United Nations Intergovernmental Panel on Climate Change warns that if Earth heats up by an average of 3.6 degrees Fahrenheit, virtually all the world’s coral reefs will die; retreating ice sheets in Greenland and Antarctica could unleash massive sea level rise; and summertime Arctic sea ice, a shield against further warming, would begin to disappear.

But global warming does not heat the world evenly.

A Washington Post analysis of more than a century of National Oceanic and Atmospheric Administration temperature data across the Lower 48 states and 3,107 counties has found that major areas are nearing or have already crossed the 3.6-degree Fahrenheit mark.

— Today, more than 1 in 10 Americans — 34 million people — are living in rapidly heating regions, including New York City and Los Angeles. Seventy-one counties have already hit the 3.6-degree Fahrenheit mark.

— Alaska is the fastest-warming state in the country, but Rhode Island is the first state in the Lower 48 whose average temperature rise has eclipsed 3.6 degrees Fahrenheit. Other parts of the Northeast — New Jersey, Connecticut, Maine and Massachusetts — trail close behind.

— While many people associate global warming with summer’s melting glaciers, forest fires and disastrous flooding, it is higher winter temperatures that have made New Jersey and nearby Rhode Island the fastest warming of the Lower 48 states.

Five takeaways from The Post’s analysis of warming climates in the United States

The average New Jersey temperature from December through February now exceeds 32 degrees Fahrenheit, the temperature at which water freezes. That threshold, reached over the past three decades, has meant lakes don’t freeze as often, snow melts more quickly, and insects and pests don’t die as they once did in the harsher cold.

The freezing point “is the most critical threshold among all temperatures,” said David A. Robinson, New Jersey state climatologist and professor at Rutgers University’s department of geography.

The uneven rise in temperatures across the United States matches what is happening around the world.

In the past century, the Earth has warmed 1.8 degrees Fahrenheit. But that’s just an average. Some parts of the globe — including the mountains of Romania and the steppes of Mongolia — have registered increases twice as large. It has taken decades or in some cases a century. But for huge swaths of the planet, climate change is a present-tense reality, not one looming ominously in the distant future.

To find the world’s 2C hot spots, its fastest-warming places, The Post analyzed temperature databases, including those kept by NASA and NOAA; peer-reviewed scientific studies; and reports by local climatologists. The global data sets draw upon thousands of land-based weather stations and other measurements, such as ocean buoys armed with sensors and ship logs dating as far back as 1850.

In any one geographic location, 3.6 degrees Fahrenheit may not represent global cataclysmic change, but it can threaten ecosystems, change landscapes and upend livelihoods and cultures.

In Lake Hopatcong, thinning ice let loose waves of aquatic weeds that ordinarily die in the cold. This year, a new blow: Following one of the warmest springs of the past century, harmful bacteria known as blue-green algae bloomed in the lake just as the tourist season was taking off in June.

New Jersey’s largest lake was shut down after the state’s environmental agency warned against swimming or fishing “for weeks, if not longer.”

The nation’s hot spots will get worse, absent a global plan to slash emissions of the greenhouse gases fueling climate change. By the time the impacts are fully recognized, the change may be irreversible.

Daniel Pauly, an influential marine scientist at the University of British Columbia, says the 3.6-degree Fahrenheit hot spots are early warning sirens of a climate shift.

“Basically,” he said, “these hot spots are chunks of the future in the present.”

America’s hot spots

Nationwide, trends are clear. Starting in the late 1800s, U.S. temperatures began to rise and continued slowly up through the 1930s. The nation then cooled slightly for several decades. But starting around 1970, temperatures rose steeply.

At the county level, the data reveals isolated 3.6-degree Fahrenheit clusters: high-altitude deserts in Oregon; stretches of the western Rocky Mountains that feed the Colorado River; a clutch of counties along the northeastern shore of Lake Michigan — home to the famed Sleeping Bear Dunes National Lakeshore near Traverse City.

Along the Canadian border, a string of counties from eastern Montana to Minnesota are quickly heating up.

The topography of warming varies. It is intense at some high elevations, such as in Utah and Colorado, and along some highly populated coasts: Temperatures have risen by 2C in Los Angeles and three neighboring counties. New York City is also warming rapidly, and so are the very different areas around it, such as the beach resorts in the Hamptons and leafy Westchester County.

(Clicking this image  takes you to the article on the Washington Post. Scroll down for FIND YOUR COUNTY.)

The smaller the area, the more difficult it is to pinpoint the cause of warming. Urban heat effects, changing air pollution levels, ocean currents, events like the Dust Bowl, and natural climate wobbles such as El Niño could all be playing some role, experts say.

The only part of the United States that has not warmed significantly since the late 1800s is the South, especially Mississippi and Alabama, where data in some cases shows modest cooling. Scientists have attributed this “warming hole” to atmospheric cycles driven by the Pacific and Atlantic oceans, along with particles of soot from smokestacks and tailpipes, which have damaging health effects but can block some of the sun’s intensity. Those types of pollutants were curtailed by environmental policies, while carbon dioxide remained unregulated for decades.

Since the 1960s, however, the region’s temperatures have been increasing along with the rest of the country’s.

The Northeast is warming especially fast.

Anthony Broccoli, a climate scientist at Rutgers, defines an unusually warm or cold month as ranking among the five most extreme in the record going back to the late 1800s. In the case of New Jersey, he says, “since 2000, we’ve had 39 months that were unusually warm and zero that were unusually cold.”

Scientists do not completely understand the Northeast hot spot. But fading winters and very warm water offshore are the most likely culprits, experts say. That’s because climate change is a cycle that feeds on itself.

Warmer winters mean less ice and snow cover. Normally, ice and snow reflect solar radiation back into space, keeping the planet relatively cool. But as the ice and snow retreat, the ground absorbs the solar radiation and warms.

Temperature changes in the Northeast U.S. 1895-2018

NOAA data shows that in every Northeast state except Pennsylvania, the temperatures of the winter months of December through February have risen by 3.6 degrees Fahrenheit since 1895-1896. And U.S. Geological Survey data shows that ice breaks up in New England lakes nine to 16 days earlier than in the 19th century.

This doesn’t mean the states can’t have extreme winters anymore. Polar vortex events, in which frigid Arctic air descends into the heart of the country, can still bring biting cold. But the overall trend remains the same and is set to continue. One recent study found that by the time the entire globe crosses 3.6 degrees Fahrenheit, the Northeast can expect to have risen by about 5.4 degrees Fahrenheit, with winter temperatures higher still.

Losing three feet of beach a year

Climate change plays havoc differently in different places.

In Rhode Island, Narragansett Bay has warmed as much as 2.9 degrees Fahrenheit in the past 50 years, and for want of cooler water, the state’s lobster catch has plummeted 75 percent in the past two decades.

Along the shoreline, the hotter and higher sea is shuffling the lineup of oceanfront homes.

Roy Carpenter’s Beach is a collection of summer cottages along a quarter-mile stretch that is eroding faster than any other part of the state — an average of 3.3 feet a year.

Rob Thoresen’s great-grandfather bought the property nearly a century ago, and residents living in 377 cottages there now lease the land from the family business.

About a decade ago, the family tried — in vain — to persuade residents to move away from the encroaching ocean. Their reluctance was no surprise; the back of the property features a view of cornfields.

But then the coast took an indirect hit from Hurricane Sandy. It damaged 11 homes in the community’s front row, with three of them washing out to sea. The surf laps over the remains of concrete foundations and wooden pylons, knocking over construction fences.

In 2013, 28 families in the first and second rows started moving to the back of the development — roughly 1,000 feet away. The community is planning to move another 20 houses.

For best viewing of these and other gorgeous photos, please go to the Washington Post website and scroll down.

Rising seas are eating away Roy Carpenter’s Beach in Rhode Island.
Several houses have fallen victim to the encroaching water, forcing their occupants to move farther inland.
Tony Loura bought his cottage nearly 15 years ago. It used to be 1,000 feet from the water. Now, it’s only about 150.

It is expensive. Homeowners pay to physically move their cottages or demolish them and rebuild. Matunuck Beach Properties, the management company, must survey the properties and prepare new locations, laying out new roads and sewer pipes.

Tony Loura, who has summered in Roy Carpenter’s Beach for 15 years, is philosophical about his predicament. He is on the fourth row, where he has an unobstructed view of the ocean from his rocking chair. He estimates that he used to be 1,000 feet from the water. Now, the ocean is only about 150 feet away.

“I’m hoping that I’m back far enough that I won’t have to move to the back,” said Loura, 66. “Every time they say there’s a storm, I get worried.”

With 420 miles of coastline, Rhode Island is particularly vulnerable to the vagaries of the Gulf Stream, a massive warm current that travels up the East Coast from the Gulf of Mexico before making a right turn toward Greenland and Europe.

The Gulf Stream is enormous, encompassing more water than “all of the world’s rivers combined,” according to NOAA. It is one part of an even larger global “conveyor belt” of currents that transport heat around the world.

A slowing of these currents, which scientists think is caused by the melting of Arctic ice, has pushed the Gulf Stream closer to the East Coast, bringing more warm water and, perhaps, hotter temperatures onshore. Offshore, it has become its own hot spot, helping to boost water temperatures by 3.6 degrees Fahrenheitor more in some regions.

If the slowing continues, seas could rise farther and faster. That’s because when the current slows, water it was driving toward Europe drifts back across the Atlantic to the U.S. coastline. Scientists are trying to determine whether the Gulf Stream is already contributing to rapid sea level rise on the East Coast.

MORE gorgeous photos – please go to the Washington Post website and scroll down.

Tidal gauges show sea levels have risen roughly nine inches since 1930, and researchers at the University of Rhode Island have determined that the rate has quickened by about a third in recent years.

By 2030, sea level rise will flood 605 buildings six times a year, according to the Rhode Island Coastal Resources Management Council’s executive director, Grover Fugate.

Roy Carpenter’s Beach is especially vulnerable.

Some residents want the beach’s owners to fight off the sea, Loura said.

“They think they should build a sea wall, they should bring in tons of sand,” he said. “Last year, they spent a lot of money on sand. Guess what? It’s all gone.”

Thoresen’s family is moving a convenience store and office for the second time in a decade — this time all the way back to the 18th row.

“We moved it back 100 feet, and it only bought us 10 years,” Thoresen said. “That’s crazy.”

That’s what people who live in 3.6-degree Fahrenheit zones are discovering: that climate change seems remote or invisible, until all of a sudden it is inescapable.

‘The ice is not safe anymore’

Here at Lake Hopatcong, Tim Clancy, 65, a ruddy-faced fisherman and retiree, has helped run the annual ice fishing contests for years. He has a photo of himself taken in 2015, standing in the middle of the frozen lake, a string of four perch dangling from one hand, his 400-pound all-terrain buggy parked on the ice behind him.

“It was like a tailgate party. Midnight madness. People camped out with their snowmobiles,” he says. “But the ice is not safe anymore.”

At the Lake Hopatcong Foundation offices, director Kane recalls that the lake used to freeze over by Thanksgiving and now rarely does so before January.

According to records kept by the local Knee Deep Club, a fishing group, 26 fishing contests were canceled because of poor ice conditions from 1998 through 2019. Only 19 were held successfully.

MORE gorgeous photos – please go to the Washington Post website and scroll down.

Nine miles long, Lake Hopatcong sits between two counties — Sussex and Morris — in the state’s northwest. Both have been warming fast, especially in winter. According to The Post’s review of New Jersey data, winter temperatures in Sussex have increased 4.7 degrees Fahrenheit since the winter of 1895-1896. For Morris, the winter increase has been slightly sharper 4.9 degrees Fahrenheit.

Robinson, the state climatologist, found that January temperatures in Sussex County generally need to average around 25 to 26 degrees Fahrenheit for successful ice fishing.

Instead, average winter temperatures are moving closer to the freezing point, with some winters now exceeding 32 degrees Fahrenheit.

It is not just the lake that is being wracked by climate changes.

From the Jersey Shore to the shopping malls of Paramus, from hiking trails in the northwest to the Bayway oil refinery, the state faces exceptionally heavy and unpredictable rainfall — even for New Jersey. Last year, it was inundated by a record 64.77 inches of rainfall statewide, 40 percent above average.

Pests, no longer eradicated by cold winters, are attacking people, crops and landscapes alike.

The ⅛ -inch-long southern pine beetle had been largely confined to southern U.S. forests — hence its name. But the warmer temperatures have spurred the beetle’s migration north, where it has damaged more than 20,000 acres of the state’s Pine Barrens, a vast coastal forested plain that Congress has defined as a national reserve.

“They are changing the Pinelands,” says Matthew Ayres, a Dartmouth researcher who has studied the beetle. “It may not be too long before people are driving through the Pinelands saying, ‘Why do they call it the Pinelands?'”

Mosquitoes, once dubbed on postcards as New Jersey’s “air force,” have longer seasons. The Warren County Mosquito Control Commission, whose records date to 1987, uses fixed-wing aircraft to drop a granular, naturally occurring soil microbe on swamps to kill the mosquito larvae.

But the bugs may be winning the air war. The commission’s flights are more frequent, and the past eight years, led by 2018, have had the highest numbers of acres treated annually. Mosquitoes carrying West Nile virus came up from the South 20 years ago. Last year, Warren became the last county in the state to register human cases of the disease.

“Mosquito season used to start on June 1 and end on Sept. 30,” said Rutgers professor Dina Fonseca, an expert on insect-borne disease. But unless the air war starts earlier in the spring, “you’re not going to address the mosquito problem.”

‘Completely dead’

On a cool but sunny day in May, Fred Lubnow, director of aquatic programs at Princeton Hydro, and Katie Walston, a senior scientist there, pulled up their anchor in Lake Hopatcong to find it covered with aquatic weeds. The culprit? Fertilizer runoff combined with winters too warm to kill them off.

“The plants start growing earlier and linger around longer, as well,” Lubnow said. The thick ice blocked sunlight from nurturing the weeds. But “in some of these shallow areas, as early as February, we’re looking through the ice seeing the plants growing.”

MORE gorgeous photos – please go to the Washington Post website and scroll down.

By summer, the weeds become a nuisance, forcing the state government to “harvest” them with large paddles and toss them onto a conveyor belt, then onto barges. Some years, funding has been hard to get, delaying harvesting and angering homeowners.

“If this area is not harvested, you can’t get a boat through it,” Lubnow says. Swimming isn’t possible, either. Fishing becomes difficult.

In late June, disaster struck.

The New Jersey Department of Environmental Protection detected toxic bacteria known as blue-green algae. Aerial photos showed the telltale large streaks of “pea soup” across the lake. The agency urged people to avoid swimming, wading and watersport activities such as jet-skiing, kayaking, windsurfing and paddleboarding.

“It’s almost put us out of business,” says John Clark, co-owner of Little Nicki’s Italian restaurant, which looks out onto the lake. Little Nicki’s does nearly a tenth of its business over the first two weekends in July and is usually jammed the afternoon before July 4. Yet there were only three people there that day. Clark estimated that business was down by half.

“It’s completely dead. Everyone was having a banner year. Then you hit a wall.”

Little Nicki’s Italian restaurant, across the street from Lake Hopatcong, is usually jammed in the summer, but this year, the state warned people to avoid the water, putting a damper on the restaurant’s business.

How we analyzed the data
To analyze warming temperatures in the United States, The Washington Post used the National Oceanic and Atmospheric Administration’s Climate Divisional Database (nClimDiv), which provides monthly temperature data at the national, state and county level between 1895 and 2018 for the Lower 48 states. NOAA does not provide this data for Hawaii, and its data for Alaska begins in 1925.
We calculated annual mean temperature trends in each state and county in the Lower 48 states using linear regression — analyzing both annual average temperatures and temperatures for the three-month winter season (December, January and February). While not the only approach for analyzing temperature changes over time, this is a widely used method.
County population numbers are the U.S. Census Bureau’s estimate of resident total population for July 2018.
Annual temperature averages in the interactive county feature are displayed as departures from the 1895-2018 average temperature for each county. These departures from the average are referred to as “temperature anomalies” by climate scientists.
To make the maps, we applied the same linear regression method for annual average temperatures to NOAA’s Gridded 5km GHCN-Daily Temperature and Precipitation Dataset (nClimGrid), which is the basis for nClimDiv. For mapping purposes, the resolution of the data was increased using bilinear interpolation.
The warming of Alaska was treated separately, after consulting with Rick Thoman, an expert on the state’s climate at the University of Alaska at Fairbanks. Thoman said that a linear trend does not apply in the case of this state because the warming has been so extreme in the most recent years — something that such a trend would understate. So Thoman used a smoothed curve to plot Alaska’s warming trend, calculating about 2.2 degrees Celsius (4 degrees Fahrenheit) just since 1925.
Kenneth Kunkel of the North Carolina Institute for Climate Studies, who developed climate analyses for all 50 U.S. states during the 2013 National Climate Assessment, provided an initial analysis of the Lower 48 states’ temperature trends from 1895 through 2018 at The Post’s request.
Credits
Project and story editing by Trish Wilson. Graphics editing by Monica Ulmanu. Design and development by Madison Walls. Copy editing by Emily Morman and Brian Malasics. Photo editing and research by Olivier Laurent. Project management by Julie Vitkovskaya.

‘Are You Serious?’ John Kerry Interrupts GOP Climate Denial Logic in Disbelief

Repost from DESMOG

By Justin Mikulka • Wednesday, April 10, 2019 – 13:27

John Kerry

Congressional discussions over climate change have reached such a low point that during this week’s House hearing on the national security risks of climate change, former Secretary of State John Kerry, who was testifying, broke down and just asked his Republican questioner, “Are you serious?”

Kerry’s incredulous question was in response to Republican Rep. Thomas Massie, the GOP star of the House Committee on Oversight and Reform hearing, which also featured testimony from former Secretary of Defense Chuck Hagel. Kerry’s and Hagel’s testimonies were followed by several hours of, at times, excrutiating questioning from committee members.

Republicans made a big show of the fact that Massie has an engineering degree from the Massachusetts Institute of Technology. The conflict with Kerry arose when Massie tried to undermine Kerry’s testimony on climate change because he has a political science degree from Yale.

Massie said, “I think it’s somewhat appropriate that somebody with a pseudoscience degree is here pushing pseudoscience in front of our committee today.”

If science degrees are important to Massie, he must have somehow missed the thousands of climate scientists around the world who have studiedpublishedtweetedmarched, and repeated that climate change is real, caused by humans, and having major impacts now.

During this hearing, Massie wasn’t alone in displaying bizarre logic to attack science and the reality of climate change. Rep. Paul Gosar (R-AZ) apparently thought holding up a fossil disproved that humans are causing climate change.

Climate change has been changing all through the life of this planet. I’ve got a fossil right here from Western Wyoming — a desert — but that once was under an ocean,” he said.

That was the sum total of his argument.

Not to be outdone, Rep. Greg Steube (R-FL) took issue with Kerry’s statement about global warming making existing weather events more extreme by noting: “I remember growing up and having hurricanes in Florida.”

It all led to Secretary Kerry at one point expressing his frustration to committee chairman Elijah Cummings (D-MD), saying, “Mr. Chairman, this is just not a serious conversation.”

And it was not when Republicans were part of it. However, when Hagel and Kerry both spoke, they made clear the point that climate change is a real national security threat and requires action. Meanwhile, the Republicans on the committee indicated they intend to do nothing but continue a long history of delay and denial on climate change.

Hagel and Kerry Agree: Climate Change Threatens National Security

Hagel and Kerry spent their time delivering a sober analysis of the risks climate change poses to national security — a position which they repeatedly stressed during the hearing. “Climate change is already affecting national security,” said Kerry.

Kerry also noted in his opening statement that this has been the position of every federal administration for the last 28 years. He pointed to the first Bush administration, which said in 1992, that climate change was “already contributing to political conflict.”

We don’t need to wait for more sophisticated climate models to project the security consequences of climate change,” Hagel said in his opening statement. “The impacts of climate change are clearly evident today.”

Both Hagel and Kerry spoke extensively about the current and future threats posed by a changing climate and had plenty of examples to make the case.

Among the many threats, Hagel discussed rising sea levels, extreme weather, and the lack of military readiness. Kerry raised the issues of climate migration, global pandemics, water scarcity, and extreme weather’s current contribution to radicalism, which he said would continue to create instability that would be “manna from heaven for extremists.”

Perhaps the best single example of how climate change is impacting security in the U.S. can be found at Norfolk Naval Base in Virginia. This base — the largest American military base — already is dealing with flooding and sea level rise. At one point in the hearing, former defense secretary Hagel mentioned the need to potentially relocate the base in the future due to sea level rise.

And yet when Republicans in the hearing had a chance to respond to this rather alarming fact, they spent that time mostly ridiculing the idea that any of this should even be discussed.

Gas Is a ‘Bridge Fuel,’ Secretary Kerry?

John Kerry was a strong advocate for dealing with climate change throughout the hearing and acknowledged the significant strides freshman Rep. Alexandria Ocasio-Cortez, who sits on the House Committee on Oversight and Reform, has already taken to advance the issue in her short congressional tenure.

However, Kerry also proceeded to repeatedly champion a supposed climate change solution espoused by the fossil fuel industry and did so using industry talking points, referring to natural gas as a “bridge fuel” to climate-friendly energy sources.

While saying that natural gas would be “a component of our energy mix for some time to come,” Kerry justified this position with a flawed argument for gas.

Gas gives us a 50 percent gain over the other fossil fuels in the reduction of emissions, so it’s a step forward,” he said.

Kerry’s take, which compares how “clean” natural gas is compared to other fossil fuels, is true when simply comparing carbon dioxide emissions from coal-fired power to the newest gas power plants. However, that limited comparison excludes the ways natural gas production, and its potent methane contributions, are adding to climate change.

The concept of natural gas as a “bridge fuel” to renewable sources has been debunked repeatedly. And as methane flaring, leaking, and venting in the fracked oil and gas supply chain continue to increase rapidly, the climate impacts of fracked gas can be similar or worse than other fossil fuels.

Kerry and Hagel adeptly explained the serious national security threats posed by climate change. However, calling natural gas part of a long-term solution to preventing catastrophic climate change isn’t a serious conversation either.

Main image: Former Secretary of State John Kerry addressing congress. Credit: Screenshot from Congressional testimony. 

This List Of Climate Change Solutions May Be Key To Reversing It

Repost from Forbes
[Editor: I’m not sure about this.  It starts out sounding a bit like a “sell job.”  In fact, they are trying to sell a book, but you can view the list of 100 solutions here: drawdown.org/solutions-summary-by-rank.  Interesting, and possibly helpful guide to positive actions that can be taken.  – R.S.]

This List Of Climate Change Solutions May Be Key To Reversing It

Devin Thorpe, Mar 22, 2019, 09:00am


“Brilliant” is the word one source used to describe Project Drawdown’s ranked list of 100 climate change solutions, begging the meta question, should the list be on the list.

Having a variety of climate change solution options is only useful if everyone who should know they exist does know, making a credible list of climate solutions potentially as important as the solutions on the list.

In 2017, Project Drawdown, published the New York Times bestseller Drawdown, edited by the founder, Paul Hawken, 72. (Be sure to watch the full interview with Hawken in the player at the top of the article.)

Mehjabeen Abidi Habib, the author of Water in the Wilderness, based in Pakistan, the seventh most vulnerable country to climate change effects, serves on the Project Drawdown advisory board. She sees the effort as evidence “that it is not too late to make choices to change our world view and the actions that arise from the current paradigm.”

Jason F. McLennan, founder and chair of the International Living Future Institute and CEO of McLennan Design has known Hawken for years and notes that his work was mentioned in Drawdown. “I think it’s brilliant is the short answer,” he says. “It doesn’t spend time and energy on pointing fingers or criticizing things.  It focuses on positive solutions.”

Congressman Tim Ryan (D-OH) who counts Hawken as a friend notes that the project is intended “not just to slow down climate change but reverse it.”

Daniel J. Siegel, MD, author of Aware: The Science and Practice of Presence and a clinical professor at UCLA School of Medicine agrees with the Congressman, adding, “My take on Project Drawdown is that it is a scientifically solid, insightful guide to some of the most important and effective steps we are taking to reverse global warming.”

Habib highlights the optimism embedded in the project. She notes that Hawken says in the introduction that climate change is “happening for us” to help us create a better world.

Credibility from Sound Science

Project Drawdown is no mere journalistic attempt to document and prioritize the science of climate change. It is a serious, multi-year, ongoing scientifically-driven research project to identify the most impactful climate change interventions, ranking them according to their potential to reduce carbon in the atmosphere, with the goal in mind to ultimately draw down the levels of atmospheric carbon and reverse climate change.

Martin O’Malley, the former governor of Maryland, serves on the board, bringing political clout. “We [Hawken and I] had worked together on every State of the State I gave as Governor of Maryland from 2010 to 2015.  Paul kindly asked me join the Drawdown Board in 2016.”

John Elkington, founder and chief pollinator for Volans, says, “Critically, the mathematical modeling involved has given the rankings far greater credibility than other initiatives.”

“As a scientist, the strategy of Project Drawdown is an important approach to seeing how we can find a way to reduce carbon dioxide emissions and reverse the direction of climate change from the disasters that await to a more promising future,” says UCLA’s Siegel, approving of the approach. Pakistan’s Habib also approves. Fearing that the approach might be US-centric, she was pleased to see “the universality of its priorities.”

Headshot of Paul Hawken

Paul Hawken CREDIT: PAUL HAWKEN

Hawken explains the approach, “Project Drawdown gathers and facilitates a broad coalition of researchers, scientists, graduate students, PhDs, post-docs, policy makers, business leaders and activists to assemble and present the best available information on climate solutions.”

A bestselling author, Hawken is himself a highly regarded climate voice, frequently being quoted as an expert in the media. He points out that the Project Drawdown team is not doing primary research, rather they are aggregating and reviewing published data. “There is the data. You can find it yourself,” he suggests, arguing for the objectivity of the approach.

Empowering Solutions

Governor O’Malley explains the potential impact of Project Drawdown, “There is a management wisdom ‘things that get measured are the things that get done.’ But when it comes to reversing global warming no one before had done the basic work of measuring the potential impact of the range of human solutions to this human-caused problem.  Drawdown has now done that.”

“Project Drawdown reminds us to never underestimate what we can do,” says Betsy Taylor, president of the consulting firm Breakthrough Strategies. “Together, we can address the climate threat and make everyone safer.”

As a clear sign that the work is being taken seriously, Penn State is launching two programs based specifically on Project Drawdown, according to Tom L. Richard, director of the Institutes of Energy and the Environment there. First, is an undergraduate “Drawdown Scholars” program over this coming summer with 40 student-faculty teams working to improve and enhance the analytical models for implementing the solutions. The second is to host an international conference called “Research to Action: The Science of Drawdown.”

The impact of Project Drawdown isn’t just academic or theoretical. In Pakistan, Habib notes action is being taken based on the list. Noting that the most impactful item on the list is refrigerant management, caused the government to prioritize this by policy. “Just today, a project preparation grant has been received to help Pakistan prepare to phase out old refrigerators and phase in energy efficient refrigerators.”

One Problem With Many Solutions

“This is an impressive project, but what is perhaps most striking is the sheer diversity of the solutions available to us, from converting to green-­energy technologies to transitioning to healthier plant-rich diets,” notes Congressman Ryan. “Project Drawdown reminds us that although the challenges we face are great, they come with exciting opportunities to change the world for the better.”

Project Drawdown ranks 80 existing interventions that are already being scaled by their potential for carbon impact. The list also includes 20 additional interventions that are proven but are not yet scaling.

Commenting on the wide range of solutions listed by Project Drawdown, Robyn O’Brien, vice president of replant Capital, says, “None of us can do everything, but all of us can do something. It allows you to pick something that you are passionate about, to leverage it with what you are good at and drive change.”

“I think the list of climate interventions also highlight surprising things that need their due. The focus on women and girls is huge. So, too, is the focus on food waste. These are things we need to solve for multiple reasons,” says McLennan, whose work on living building is included in Drawdown. Noting that refrigerant management is number one and is “something we can address without too much difficulty,” he says, is an example of the “mundane” on the list.

The list isn’t just interesting or clever in its diversity. “Project Drawdown’s comprehensive framework is proving a powerful lens through which to focus our university’s research, education and outreach expertise on this critical issue,” Richard says.

Similarly, Governor O’Malley says, “So instead of merely connecting the scientific dots that take us all straight to hell, we can now combine that science with current technical know-how to measure, model, and map our way to a future where we Drawdown more carbon from the atmosphere every day than we pump into it.”

The List Changes Perceptions

One way that the list is having an impact is changing perceptions of both climate activists and so-called “climate deniers.”

“The ranking has proved to be a very powerful way of challenging people’s preconceptions of how we impact the climate – and of where the most powerful leverage points are for reversing global warming,” Elkington says.

UCLA’s Siegel says, “As a psychotherapist, I see one of the most powerful contributions of Paul Hawken and Project Drawdown as being the way we can have realistic hope instead of the doom and gloom one often hears when people speak of climate change.”

Penn State’s Richard says, “Project Drawdown offers a positive vision of the future; that the widespread implementation of these solutions can lead to a world of health and abundance rather than one of poverty and insecurity.”

O’Malley puts it more starkly, “ Drawdown is not the final horseman of the Apocalypse; it is, on the contrary, a roadmap to a new era of human opportunity and higher standards of living. ”

A New View of Climate Economics

Several of the people reached for comment, noted that Project Drawdown provides a refreshing view of climate economics.

McLellan noted, “that doing the right thing can be great economically for the world.”

Hawken explains that implementing wind power will have a positive financial return for the world of over $7 trillion over 30 years for that single intervention.

He notes that the estimate for this and other interventions improves over time as technology progresses and data grows, even since the book was published in 2017. “About 70% of the solutions are actually very profitable and the other 20% are breaking even and 10% cost money,” Hawken says. “I think what people say is, ‘Well, my god, it’s a cost, you know, we can’t afford it.’ We say, ‘We can’t afford not to,’” he says.

Challenges and Limitations

Despite the praise, it is clear that Project Drawdown is not a climate cure-all. “

The key question now is whether we can muster the political will to advance Project Drawdown’s inspiring set of solutions,” points out Taylor.

John Wick, founder of the Marin Carbon Project, spoke with me at length. He is both a fan of and a collaborator with Project Drawdown. Still, he notes that there is still work to be done.

“I would say that that first draft the first list was a proof of concept and that there are other things that that are possibly even more exciting and more will more directly result in wholesale carbon harvesting from the atmosphere and stabilizing the climate. But they weren’t ready for primetime,” he says. “And so what we did with Project drawdown was establish a process whereas new things can come in to this process. And as we perfect the modeling I expect that the [final] draft results will be different.”

O’Malley notes that realizing the potential impact of Project Drawdown will require local adoption. “The global macro-model was a needed and important breakthrough, but success will depend upon our ability to make that model actionable in the small places close to home all over the globe. Cities, towns, and farmlands. Counties and States.”

Implicitly making the case for including the Drawdown list on the list, Hawken says, “ We solve [climate change] by creating the tools, knowledge and capacity for self-organization to address these issues worldwide. ” Whether the list should be on the list or not, here’s to effective self-organization.